
Svar till Övning 6 i Dator- och telekommunikation

När ett system består av flera delar som fungerar på (ungefär) samma sätt så är ofta
processimulering bra att använda. Börja med att svara på följande frågor innan du börjar skriva
simuleringsprogrammet:

• Vilka processer behövs?
• Vilka är processernas interna tillståndsvariabler?
• Vilka signaler behövs?
• Vad ska en process göra när den får en viss signal?

Uppgift 1
Antag att du har ett system som består av tre buffertar och en betjänare. Betjänaren börjar med att
kolla om det finns jobb i buffert 1. Om så är fallet så betjänas ett jobb därifrån. Om det inte finns
något jobb där så väntar betjänaren en kort tid, 0.1 s och därefter kollar betjänaren om det finns
någon kund i buffert 2 etc. När är klar med buffert 3 så börjar man om med buffert 1 igen.

a) Vilka processer kan vara lämpliga för att simulera detta system?
Generator, Buffer, Server

b) Vilka signaler ska kunna skickas mellan processerna?
ready, job, anyJobs, yes, no

c) Beskriv med pseudokod vad en process ska göra när den får en signal.
För Generator:
Om mottagen signal == ready
 sendSignal(ready, this, time + timeToNextCustomer());
 sendSignal(job, sendTo, time);

Vi antar att det finns en metod timeToNextCustomer() som ger tiden till nästa kund som ska
genereras och att sendTo är en referens till den buffert som generatorn ska skicka jobb till.
Det finns en generator för varje buffert.

För Buffer:
Om mottagen signal == job
 numberInBuffer++;
Om mottagen signal == anyJobs
 if (numberInBuffer == 0)
 sendSignal(no, server, time);
 else {
 sendSignal(yes, server, time);
 numberInBuffer--;}

Här antar vi att det finns en referens till betjänaren (server) och en variable numberOfServer
som håller reda på antalet kunde i bufferten.

För Server:
Om mottagen signal == ready
 actBuffer = nextBuffer();
 sendSignal(anyJobs, actBuffer, time);
Om mottagen signal == yes
 sendSignal(ready, this, time + serviceTime());
Om mottagen signal == no
 sendSignal(ready, this, time + 0.1);
Här förutsätter vi att det finns en metod som ger oss betjäningstiderna (serviceTime()) och
en som ger oss nästa buffert som ska behandlas (nexteBuffer()). Variabeln actBuffer är en
referens till den buffert som håller på att behandlas.

Uppgift 2
Vi ska studera lastdelning, vilket används i många sammanhang, t ex webbservers, datanät och inom
logistik. Det finns ett antal kösystem och en fördelare som helt enkelt ska fördela jobb mellan köerna.
Fördelaren väljer vilket kösystem som en ankommande kund ska skickas till. Se figuren:

Det finns fem kösystem. Fördelaren kan använda någon av följande algoritmer för att bestämma till
vilket kösystem som den ska skicka ett nytt jobb:

i. Den väljer ett system på slump
ii. Den väljer först system 1, sedan 2, sedan 3, sedan 4, sedan 5, sedan 1 igen etc.

iii. Den väljer det kösystem som har minst antal jobb

Lös följande uppgifter:

a) Vilka processer är lämpliga?
b) Vilka signaler?
c) Vad ska en process göra när den får en signal?

Denna uppgift finns löst i ett program som kan hämtas från kursens hemsda strax nedanför detta
dokument.

Uppgift 3
Antag att vi har ett kösystem med en oändlig buffert och en betjänare. Vi antar att
ankomstintensiteten är 𝜆𝜆 och medelbetjäningstiden 𝑥̅𝑥. För alla värden på 𝜆𝜆,

Dispatcher

a) Beräkna sannolikheten att betjänaren är upptagen

 𝑃𝑃(upptagen) = �
𝜆𝜆𝑥𝑥 om 𝜆𝜆 < 1

𝑥𝑥

1 om 𝜆𝜆 ≥ 1
𝑥𝑥

b) Beräkna medelantal kunder i betjänaren
Samma svar som i a-uppgiften.

c) Beräkna intensiteten med vilken kunder blir färdigbetjänade

Betjäningsintensitet= �
𝜆𝜆 om 𝜆𝜆 < 1

𝑥𝑥
1
𝑥𝑥

om 𝜆𝜆 ≥ 1
𝑥𝑥

Uppgift 4
Det är ofta av intresse att optimera olika slags system (inte helt förvånande). Vilket tror du är bäst,
att ha två betjänare med maximala betjäningsintensiteten 1 per sekund eller en med maximala
betjäningsintensiteten 2 per sekund? Vad bör man mena med bäst i detta fall?
Rimligen menar man att de bästa är den som ger kortast medeltid i systemet. I så fall är den bättre
att ha en snabb betjänare i stället för två hälften så snabba. Om en kund kommer till ett tomt system
blir den kunden betjänad dubbelt så snabbt om man har en snabb betjänare i stället för två hälften
så snabba.

Uppgift 5
En simulering är ju ett experiment som man utför i en dator. Syftet är ofta att bestämma en storhet
som man inte kan räkna ut. Ofta vill man få en uppfattning om hur noggrann en simulering är, det vill
säga hur nära man kommer den okända storheten. Kan du fundera ut något sätt att försöka avgöra
om en simulering är noggrann eller inte, utan avancerad matematik.
Det enklaste är att köra simuleringen flera gånger med olika slumptal och se hur mycket resultaten
skiljer sig åt. Stora skillnader tyder på att simuleringen inte är så noggrann.

	Uppgift 1
	Uppgift 2
	Uppgift 3
	Uppgift 4
	Uppgift 5

